视频选集

在人工智能领域,Kolmogorov-Arnold Networks(KAN)正成为一种极具潜力的创新技术。KAN的核心在于将激活函数置于网络的边(连接)上,而不是传统的节点上,并通过B样条函数进行参数化,使得网络能够以较少的参数量实现高精度的预测。这种设计不仅提高了模型的透明度和可解释性,还为科学研究提供了新的视角。KAN在多个领域展现出卓越性能,包括时间序列预测、图学习任务以及卷积神经网络的改进。随着KAN技术的不断发展,其在人工智能各领域的应用前景将更加广阔。